
Literary Review: Reinforcement learning and Logic

Jonathan Azpur
York University

Lassonde School of Engineering
jonaac@yorku.ca

1. Introduction
In the past 3 to 4 years we have seen a rise in the num-

ber of researched focused on the use of logic (linear tempo-
ral logic, modal temporal logic, etc.) as a tool to improve
and assist traditional Reinforcement Learning. This field of
study captured my attention and I think it could be a good
subject for my Master’s thesis, so I decided it would be a
good idea to dive deeper into this subject. In this project
I will be doing a literary review on the current research
that covers the conjoint topic of Reinforcement learning and
Logic

This project has two main goals. First, it is meant to crit-
ically evaluate and provide an overview of the significant
literature published on this topic. Second, this project will
help me identify any potential gaps within the context of ex-
isting literature, and assist me in defining potential research
topics that I will attempt to address on my future thesis.

I will go over all the research that I put together for this
project, give an overview of their contents, and critically
evaluate the research. I divided the body of work into three
main topics; Safe Reinforcement Learning (Section 2), Im-
proving RL performance (Section 3) and Generalization of
RL policy learning (Section 4). I added some more research
papers (Section 5) that I examined but did not go in-depth.
Finally, I will identify any potential gaps within the con-
text of existing literature and define potential research top-
ics that I will attempt to address in my future thesis (Section
6).

2. Safety of Reinforcement Learning agents
The papers in this section are mainly focused on the use

of Logic programming to assist Reinforcement Learning on
making sure that the agent is safe during training, deploy-
ment, or both.

2.1. Li, Xiao et al. 2019 [14]

The first research paper I will be discussing is the on
developed by Li, Xiao et al. (2019). The goal of this re-
search paper is to try and find a solution to two of the main

Figure 1. Diagram of the proposed TL guided safe reinforcement
learning system

issues with Reinforcement learning, complex task specifi-
cation and safe exploration. The authors propose a system
that will use syntactically co-safe Truncated Linear Tempo-
ral Logic (scTLTL), which is a restricted version of trun-
cated linear temporal logic, and its equivalent Finite State
Automata (FSA). First, it will provide reward to the RL
agents. Second, the system will perform goal selection for
the control Lyapunov function (CLF) in order to perform
guided exploration. Finally, it will define sets of safe states
for the control barrier function (CBF) to keep the agent safe.

The system proposed has five main components and can
be seen in Fig1. The scTLTL formulas, an FSA that rep-
resents the scTLTL formulas, the Reinforcement Learning
agents, the Quadratic Program which in it of itself contains
the CLF and the CBF and the environment.

The FSA will provide an augmented reward to the RL
agent to promote the avoidance of potentially unsafe states
given its current state. The reward is a follows:

r̃ = min(ρ(s′, Dφ
q), crρ(s′,¬ϕq,qtrap)) (1)

Where ρ(s′, Dφ
q) promotes the agent to progress from the

current FSA state and ρ(s′,¬ϕq,qtrap) penalizes the agent

1

Figure 2. Simulation environment

for going towards the unsafe (or trap) state. Given this re-
ward the agent will select the appropriate action arl.

The FSA will also be used for goal selection. The idea
is to find the edge that is easiest for the agent to activate
and then find the MDP state that maximizes the chance of
completing the predicate guarding said edge. This can be
formalized as:

sg(q) = argmax
s∈S

ρ(s, ψq,q′ρmax)

q′ρmax = argmax
q′∈Ωq,q′6=qtrap

ρ(s, ψq,q′)

Then, the CLF can select an action aclf for the agent to
complete its goal. The FSA will also help define safety
strategies by providing hard constraints to the CBF. The
goal is to avoid the predicate ϕq,qtrap that will take us to
the unsafe state, or formally they want ¬ϕq,qtrap always to
be true. So, they restructure ¬ϕq,qtrap to its conjunctive
normal form ¬ϕq,qtrap =

∧
i(
∨
j ψi,j) and extract the set

of states that are unsafe from this predicate.

Cφ(s, q) = h0
φ(s, q), . . . , hiφ(s, q).where

hiφ(s, q) = ψijρmin , jρmin = argmin
j

ρ(s, ψij)

Then, the CBF can select an action acbf to promote keeping
the agent safe.

This framework allows the system to execute a mostly
traditional model-free Reinforcement learning algorithm,
except for the fact that the state feedback from the environ-
ment depends on the sum of the actions arl, aclf and acbf
selected in each iteration, and the reward feedback from the
environment will have the FSA reward r̃ added to it. The
algorithm is shown to be able to learn an optimal policy

In order to evaluate this novel system Li, Xiao et al. de-
ployed it in an environment consisting of an agents that
moves in a 2D world that has to reach three location in a
specific order while also avoiding a number of moving ob-
ject, Fig 2.

Figure 3. Learning Agent and Restraining Bolt

The results show that with the proposed framework the
agent is capable of learning a policy quicker, can learn how
to avoid unsafe scenarios and has a higher success rate.

2.2. De Giacomo, et al. 2019 [12]

Restraining bolts (RB) are a device that restricts an
agents actions when connected to its systems. Restraining
bolts are used to limit actions to a set of desired and safe
behaviours. De Giacomo et al. propose combining RB, ex-
pressed as logical specification in LTLf / LDLf , with RL
to ensure the agent’s safety. Incorporating RB to the over-
all system introduces a new problem, where now there is
two distinct representations of the environment, one by the
agent and one by the restraining bolts. So the goal is for the
agent to learn a optimal policy while shaping its goals to
suitably conform to the restraining bolt specifications even
though they are not expressed in the same terms.

The system proposed has three main components and
can be seen in Fig3. The RL agent, the restraining bolts that
represents the LTLf / LDLf formulas, the feature extrac-
tors for both. The learning agents is modelled by a MDP
Mag = 〈S,A, Trag , Rag〉 and the restraining bolt is for-
mally defined as RB = 〈L, {(ϕi, ri)}〉 where L is the set
of possible fluent configurations and {(ϕi, ri)} is a set of
restraining specification with ϕi being an LTLf / LDLf for-
mula and ri the reward associated with ϕi. The RL problem
with LTLf / LDLf restraining specifications can therefore
be defined as the pair Mrb

ag = 〈Mag, RB〉
It is important to note that the use of LTLf / LDLf makes

the whole system non-Markovian, so the solution to the RL
with LTLf / LDLf restraining specifications is a policy ρ :
(Q1× · · · ×Qm×S)∗ −→ A that maximizes the expected
reward. The solution can be obtained by reducing Mrb

ag to
an NMDP Mag

n = 〈S×L, T rrbag, {(ϕi, ri)}∪{(ϕs, Rag}〉.
Because the LTLf / LDLf formulas can be transformed into
a deterministic finite state automata (DFA) it allows them to
transform the NMDP into an equivalent MDP over an ex-
tended state space. Given this equivalence, De Giacomo et
al. provide a theorem and its prove stating that the optimal
policy from the original problem can be found by learning
the optimal policy from the new, inferred MDP. This the-
orem provides them with a technique to learn the optimal
policy for RL with LTLf / LDLf restraining specification.

2

Figure 4. Breakout, Sapiento and Cocktail Party

To evaluate the soundness of the proposed system it is
tested on three distinct environments (Fig. 4). First, Break-
out, a video game where the player is in control of a paddle
that moves from left to right at the bottom of the screen and
has to drive a ball to hit all the bricks at the top of the screen.
Second, Sapiento, an educational game for children where
a small mobile robot has to be programmed to visit specific
cells in a 5x7 grid. Third, the Cocktail Party experiment,
based on a service robot in a cocktail party who has to serve
drinks and snacks to people.

The results show that in all three environments the agent
is capable of learning the optimal policy over time. It is
shown that in all cases the agent is capable of increasing its
reward and its in-game score as a function of the number of
iterations. The main result of this paper is that, in spite of
the separation between the two representation of the envi-
ronment, under general circumstances, the agent can learn
to act so as to conform as much as possible to the LTLf /
LDLf specifications.

2.3. Hasanbeig et al. 2020 [7]

Reinforcement Learning deliver good training outcomes
and have been proven to be able to optimally solve a
decision-making problem without any prior knowledge
about the MDP model, but given its dependence on the
agents experience (which are obtained by exploring their
environment) and the ergodicity assumption (which claims
that any state can be reached by any other state given the
appropriate policy) RL lacks the ability to guarantee that
an agent will not enter an unsafe state. Even though this
may be acceptable in most cases, in scenarios such as safe-
critical physical systems exposing the agent to unsafe states
is not viable methodology. For example, if you are training
a robot to fly a helicopter it is not viable to allow the robot
to experience crashing the helicopter.

In order to address the lack thereof any sort of safety
guarantee in RL, Hasanbeig et al. propose the use of Cau-
tious RL, a safe exploration scheme for model-free RL. The
algorithms are based on the idea of the agent having a lim-
ited knowledge of its own dynamics. The agent starts by
performing exploratory cautious actions, and gradually, in
line with the growing confidence about the environment ob-
tained from observations, the range of acceptably safe ac-
tions grows, and the uncertain component of the dynamics
becomes known. In addition Cautious RL will use LTL for-
mulas in order to specify tasks for policy synthesis in RL,

and it will automatically provide reward shaping and task
decomposition for complex tasks. This will allow the algo-
rithm to predict unsafe state-action pairs (safe padding) to
limit the range of the agents exploration while policy learn-
ing for LTL task satisfaction. It is shown that the method
guarantees asymptotic results.

In order to combine the use of Reinforcement Learning
with LTL formulas the authors combine the MDP repre-
senting the RL problem M = (S,A, s0, P,AP,L) with
the limit-deterministic generalized Buchi automaton LGBA
U = (Q, q0,∆,Σ, F) corresponding the LTL formulas in a
single entity called a Product MDP:

M⊗U = (S ×Q, (s0, q0), A, P,Q,L⊗, F) (2)

where L⊗ : S ×Q→ 2Q:
In addition, the Hasanbeig et al. introduce their state

adaptive reward function:

R(s⊗, a) =

{
rp if q′ ∈ A, s⊗ = (s′, q′)

0 otherwise
(3)

where A is the accepting frontier set. The reward func-
tion will provide a positive reward if the agent is getting
closer to the goal states in the LGBA, and a neutral reward
otherwise. Therefore, guiding the agent to visit the accept-
ing sets infinitely often, and consequently, satisfy a given
LTL property ϕ.

To ensure safe exploration they create a safe padding by
defining a set of safe states. Let the current state of an agent
be s, the set of safe states is defined as:

Osafe(s) = {x ∈ O(s), q → q′ /∈ ∆sinks} (4)

The product MDP (2), the state-adaptive reward func-
tion (3) and the safe padding (4) will allow Hasanbeig et al.
to develop a learning architecture, Cautious RL, capable of
generating safe policies that satisfy a given LTL formula.
Cautious RL is based on the Q-Learning algorithm, but it
has a double learner architecture made off of an optimistic
and pessimistic learner.

The optimistic learner will employ Q-learning to maxi-
mize the expected cumulative reward. The q-function will
be updated by following the rule:

Q(s⊗, a) = Q(s⊗, a)+µ[R(s⊗, a)+γ max
a′∈A⊗

Q(s⊗′, a′)−Q(s⊗, a)]

(5)
The authors show that the optimistic learner will con-

verge to an optimal action-value function Q∗ and therefore
one will be able to generate an optimal policy pi∗ by select-
ing the action that returns the highest Q∗:

π∗(s⊗) = arg min
a∈A⊗

Q∗(s⊗, a) (6)

3

The pessimistic learner will use safe padding to generate
the set of safe actions:

Ap(s
⊗) = {a ∈ A⊗ : U(s⊗, a) < pcritical} (7)

The set will be sorted in from the action with the lowest
to the highest, where is the maximum probability of vio-
lating a safety constraint and will select the top k actions
based on:

a∗ = argmax
a∈Ap[1:k]

Q(s⊗, a)− rpU(s⊗, a) (8)

where k is determined by a monotonically increasing
function given the number of visitation at the agent’s cur-
rent state, and rp is used to balance Q and U .

To test the Cautious RL algorithm Hasanbeig et al. test
their algorithm in two environment. A slippery grid world,
where the agent has to reach a highlighted area without
falling on the slippery areas, and the video game Pacman.
The results show that in both cases the safe padding pro-
vides a higher success rate.

Literary Review - Safety

The papers discussed provide different perspective on
how to combine Reinforcement Learning with different
types of Logic programming and formal logic languages
to ensure the agent’s safety during training, deployment, or
both. The results of these papers are promising and demon-
strate the potential of their methods, but in my opinion,
there are some aspects of their research work that could be
improved.

The system presented by Li, Xiao et al. [14] integrates
a high number of hyperparameters to tune manually. The
performance is heavily influenced by these parameters. To
ensure the scalability and the potential generalization of
this approach it would be interesting to try and update the
methods for it to alleviate their burden. Also, when tak-
ing a look at the results we see that the algorithm using
only the CBF has a higher success rate than the algorithm
using CLF+CBF, which intuitively shouldn’t be the case.
There is no discussion as to why this could be and therefore
misses an opportunity of further understanding the dynam-
ics of both control functions and if there should be some sort
of variable that manages the effect of the action value cho-
sen by each control function. Finally, the proposed method
seems to be computationally very expensive. It takes a lot
of iteration for the algorithms to converge. Even though we
see that the novel algorithm seems to perform better than a
traditional RL algorithm it would be interesting to compare
its performance with other logic based RL algorithms used
for safety.

The evaluation methods used by De Giacomo, et al. [12]
seems to be incomplete in my opinion. The only thing that

can be said given the data is that their algorithm will learn
a policy over time. There is no frame of reference on how
good the algorithms actually is. For example, in order to see
the potential usefulness of the algorithm it would be best to
also compare it with a baseline RL algorithm and confirm
that the approach is capable of outperforming the baseline
in terms of the agents safety. Also, there is not mention on
the computational cost of the proposed framework. Com-
putational cost is an important feature to be aware of when
working with RL because due to its necessity to perform
random exploration to learn policies it has sample efficiency
problems and we would ant to make sure that the proposed
algorithm doesn’t make it worse. Finally, there is no men-
tion of the potential to scale the algorithm to more com-
plex safety barriers and reward structures. This should be
an important feature for considering the viability of a novel
algorithm in future work.

In the work done by Hasanbeig et al. [7] they argue for
the importance of a RL methods that provides some sort
of safety guarantee during its training, like in safety-critical
physical systems. When they perform their evaluation of the
algorithm none of the scenarios necessarily need a safety
guarantee and even though it proves that the proposed algo-
rithm does keep the agent safe the method is not fully testing
the robustness of their algorithm in a safety-critical physical
system given the motivation of this specific scenario. Also,
they introduce the notion of a double learner, where a opti-
mistic learner looks to maximize the cumulative reward and
a pessimistic learner looks to keep the agent safe, but there
isn’t much of a focus on the possible trade-off between the
optimistic and pessimistic learner, which seems like an im-
portant aspect of the algorithms that wasn’t covered.

3. Improving RL performance

The papers in this section are mainly focused on the use
of Logic programming to assist Reinforcement Learning to
improve its performance.

3.1. Toro Icarte et al. 2019a [9]

Finding optimal policy using model-based reinforcement
learning can require a lot of exploration in the environment.
Sometimes this can be of very high cost and in some cases
not possible to perform, such a physical environments. To
solve this issue, Toro Icarte et al. (2019a) propose the use
of advice to guide the agent through a more efficient ex-
ploration. They define advice as recommendations regard-
ing behaviour that may describe suboptimal ways of doing
things, may not be universally applicable, or may even con-
tain errors. The authors of this paper use Linear Temporal
Logic (LTL) to provide the agent with advice and propose
a customized version of the R-MAX RL algorithm that will
have the ability to be guided by the advice.

4

Figure 5. Example of an NFA

Linear temporal logic is the preferred formal logic lan-
guage to represent advice because it allow to describe a set
of action over time. In this case, the idea is to suggest the
agent what actions to take over time. For example, take a
look at the following LTL formula:

♦(at(key) ∧©(♦at(door))) (9)

can be understood as ”the agent should eventually get to
a state where it has the key and then eventually get to a state
where it is at the door.” which is basically advising the agent
to make sure it has a key in order to open a door.

Any LTL formula can be converted into a Nondetermin-
istic Finite State Automaton (NFA) such that a finite se-
quence of states will be accepted by the NFA if and only
if they satisfies the LTL advice formula. The authors used a
system previously developed by Baier and MciIlraith [2] to
transform the LTL formula into an NFA. Fig. 5 shows the
NFA constructed from the advice shown in (12). The NFA
will include dead-ends which signify that the agent has en-
tered a state where the LTL formula can’t be successfully
completed any more. Even after falling into a dead-end, the
advice may be useful to continue exploration. Therefore
the advice will still be suggested once the agent leaves said
state.

In order to follow any sort of advice, there has to be some
way in which the agent can understand and apply it. To be
able to do so, the authors propose that the agent have a back-
ground knowledge function hS : S×A× lit(Σ)→ N. This
function will return an estimate of the number of actions
the agent would have to take to reach a state s′ where the
literal l ∈ lit(Σ) is true. Intuitively it represents the agent’s
prior knowledge about how to make ground atomic formu-
lae either true or false. Given the background knowledge
function, Toro Icarte et al. (2019a) construct a new function
h : S × A× LΣ → N which is an extension of hB that re-
turns an estimate of the number of actions needed to satisfy
an LTL formula ϕ ∈ LΣ.

In the described framework, to follow advice is equiva-
lent to saying take the actions that will allow one to move
through the NFA edge towards the accepting state. To do so,
the authors want to identify which edges are ”useful”. By
this they mean edges that will lead us to a path where one
can reach an accepting state. So, Toro Icarte et al. (2019a)
define a Advice Guidance Formula (AGF)

ϕ̂ ≡
m∨
i=0

 ∧
(q,β,q′)∈useful(q(i))

to IBF(β)

 (10)

that will be used to give priority to actions that would
take the agent closer to the accepting state, the AGF will be
satisfied by any action that completes one of the formulas
needed to transition over a useful edge.

The formula h can be used to rank how close each action
is to making progress in satisfying the advice guidance for-
mula ϕ̂. In addition, it would be ideal to try and avoid dead-
ends, and to this point the authors define a similar function
called Advice Warning Formula

ϕ̂w ≡
m∧
i=0

 ∨
q∈q(i) and (q,β,q′)∈δ(i)

to IBF(β)

 (11)

indicate action that have the potential to reach dead-ends
in the NFA. Now, ϕ̂w will be used to define a set of action
W that will potentially lead to dead-ends:

W (s) ≡ {a ∈ A : h(s, a, ϕ̂w) 6= 0} (12)

The idea is then for the agent to be guided by h and dis-
favour actions in W .

To solve the MDP Toro Icarte et al. (2019a) use the
R-MAX RL algorithm. R-MAX is a family of RL algo-
rithms in which its agent explores the environment by as-
suming that unknown transitions give maximal reward. To
be able to incorporate the LTL advice they propose a varia-
tion of the R-MAX algorithm that plan towards the closest
unknown transition that is not in W and has a minimum h.
This methodology will make sure that the agent satisfies the
advice and as proven by the authors on the paper will also
converge to an optimal policy.

The algorithm is tested on two different environments.
First a 25× 50 grid world environment in with a door a key
and nails around the room. The agent’s goal is to grab the
key, avoid the nails and open the door with the key. The sec-
ond environment has the same elements, but with 4 concur-
rent 25 × 25 rooms in which the agent has to open the door
for each room. In the first environment the algorithms that
use positive advice converge to an optimal results quicker
than the traditional R-MAX algorithm, and in the second
environment the only algorithms that converge to optimal
solution are the ones with that use positive advice.

3.2. Ali Payani and Faramarz Fekri 2020 [15]

Relational Reinforcement Learning is a variation of RL
where the main idea is to describe the environment in terms
of objects and relations. The RRL framework has four main
advantages compared to the more traditional RL approach.

5

Figure 6. BoxWorld

First, the learnt policies are more interpretable. Second, the
learnt policy can generalize better. Third, one can incorpo-
rate inductive biases into the learning. Finally, it allows for
the incorporation of higher level concepts and prior back-
ground knowledge. On the other hand, RRL can’t be used
to work on complex environments. For example, RRL is not
a viable solution when working with complex visual scenes
and can’t be used along deep learning structures. To solve
this, the Payani et al. propose a novel deep RRL method
based on differentiable Inductive Logic Programming (ILP)
that can effectively learn from images and present the state
of the environment as first order logic predicates while still
being able take the expert background knowledge and incor-
porate it into the learning problem using appropriate predi-
cates.

The proposed framework can be seen in Fig 8. First, the
framework would process images through multiple convo-
lutional layer in the CNN. The last layer of the convolu-
tional network chain will then be treated as a feature vector
and is usually augmented with some non-local information.
This feature map is then fed into a relational learning unit
which is tasked with extracting non-local features and ob-
taining an explicit representation of the state. Finally, the
representation is fed to the dNL-ILP engine and it is tasked
with selecting the desired actions.

The proposed system is tested in two different environ-
ments. First, the BoxWorld environment. It has been widely
used as a benchmark in past RRL systems. The goal is to
stack boxes on top of each other in a specific order, the di-
mension of the observation images is 64 × 64 × 3 and ex-
plicit relational information is not available for the agents.
Second, the GridWorld environment. This environment is
consisted of a 12 × 12 grid with keys and boxes randomly
scattered. The agent must collect the key before accessing
the box. When the agent has a key, provided that it walks
over the lock box with the same color as its key, it can open
the lock box, and then it must enter to the left box to acquire
the new key which is inside. The agent cannot get the new
key prior to successfully opening the lock box on the right
side of the key box. The goal is for the agent to open the
gem box.

Figure 7. GridWorld

The algorithm is compared to A2C as a baseline algo-
rithm. In the case of the BoxWorld environment the re-
sults shows that when tested with 4 boxes both models are
able to learn a successful policy after around 7000 episodes.
On the other hand, when tested with 5 boxes, the proposed
approach converges after around 20K episodes whereas it
takes more than 130K episodes for the A2C approach to
converge, and even then it fluctuates and does not always
succeed. In the case of the GridWorld environment the
agent is tested in two variation of the environment, one with
a dead-end brach and one without. In both cases the pro-
posed approach can learn the solution in both settings very
quickly. On the contrary, the standard deep A2C was not
able to converge after 108 episodes.

3.3. Camacho et al. 2019a [5]

When it comes to Reinforcement Learning in some cases
it may take the agent many interactions with the environ-
ment to learn from sparse rewards, and it can be challeng-
ing to specify reward functions that reflect complex reward-
worthy behaviour. To address this issue Camacho et al.
(2019a) propose the use of Reward Machines as a frame-
work to represent RL reward functions in a normal form.
They show that a reward specified in any number of formal
languages (LTL, LDL, Golog, PLTL, Regular Expressions,
etc.) can be translated into a Reward Machine and how the
reward machine can be exploited by a tailored q-learning al-
gorithm to improve the sample efficiency compared to tra-
ditional reinforcement learning algorithms.

A reinforcement learning agent does not have knowl-
edge of the reward function. It is something that has to
be provided by the user/programmer regardless of the en-
vironment. For the programmer, developing a reward func-
tion can be very challenging for two main reasons. On one
hand, the states in the environment may not provide an in-
tuitive representation for reward specifications (i.e. pixels).
This may cause the states to not provide an adequate level
of abstraction for the programmer to properly define the re-
ward function. On the other hand, rewards may be a result
of a complex temporally extended behaviour (i.e. opening

6

Figure 8. Design of the proposed RRL framework

a closet, grabbing your shoes and closing the door). These
types of behaviours may not be able to be properly captured
with an MDP reward function.

To address the first challenge, the authors suggest the
use of some sort of vocabulary to perform reward specifica-
tion. In this case, the vocabulary will be the propositional
symbols from any formal language that can be transformed
into a reward machine. Based on this idea Camacho et al.
(2019a) define the reward specification as set:

Rs = {(r1 : ϕ1), . . . , (rn : ϕn)}

where ri ∈ R and ϕi is a formula over the chosen vocabu-
lary.

To address the second challenge, the authors suggest the
use of non-Markovian Reward Decision Process (NMRDP)
which is basically an MDP for the exception of the reward
which looks like:

R : (S ×A)+ × S → R

As mentioned previously Camacho et al. (2019a) will be
using Reward Machines [8]. Intuitively, they define RM as
a framework used to indicate what reward function should
currently be used to provide a reward signal given the se-
quence of state labels. The combination of formal lan-
guages and RM will help the agent with the problem of
sample efficiency. To generate a RM one has to first con-
struct a deterministic finite automata from a set of formal
predicates and then construct the RM based on said DFA.

Bringing it all together, the authors provide proof that a
reward machine and a reward specification can induce the
same non-Markovian reward function and they also provide
proof that such reward machine can be constructed and in-
duce the same non-Markovian reward as the reward speci-
fication with formal language. The authors develop a new
reward machine-tailored q-learning algorithm that signifi-
cantly enhances the existing Q-Learning for RM (or QRM)
algorithm through the exploitation of reward shaping.

To test the proposed framework Camacho et al. (2019a)
test it on three different environments. First, the office
work environment. In this grid world the agent can move
in the four cardinal directions. At certain locations, the
agent can find coffee, mail, an office, and decorations which

Figure 9. Normalized reward over iterations, Q-learning, QRM
and QRM+RS

the agents interacts with depending on the task provided.
The second environment is minecraft world, in this grid
world domain, the agent can move in the four cardinal di-
rections and can pick up different raw materials in order to
build objects. The third environment is waterworld, where
the agent moves around a continuous two-dimensional box,
by changing its velocity in one of the four cardinal direc-
tions on every step. Different coloured balls are also mov-
ing around the environment and the tasks all correspond to
touching different coloured balls at specific sequences.

In all three cases the QRM algorithm outperforms the
traditional Q-learner (Fig. 9). The data illustrates the pow-
erful advantage that QRM based approaches have over stan-
dard q-learning and it further shows that combining re-
ward shaping with QRM (QRM+RS) leads to significant
improvements in two of the three domains.

3.4. Toro Icarte et al. 2019b [10]

Even though the combination of neural networks for
function approximation with Reinforcement Learning has
become a staple in solving complex MDP problems, Deep
RL methods struggle to find an optimal solution when the
environment is partially observable. This issue is due to the
agents in these environments requiring some form of mem-
ory to be able to learn optimal policies.

Toro Icarte et al. (2019b) proposes the use of Reward

7

Machines (RM) as a tool for providing memory in partially
observable environments. RM have been originally con-
ceived to provide a structured, automated representation of
reward functions [5] [8]. The RM structure can be a tailored
version of the q-learning algorithm called Q-Learning for
Reward Machines (QRM) that is capable of learning sepa-
rate policies for each state in the RM and it has been shown
to outperform standard deep RL algorithms in several do-
mains. In addition the authors propose a method that instead
of defining an RM the system would learn the RM directly
from experience in partially observable environments so it
could be used as memory for an RL algorithm. It’s only
requirement is that the learning methods for the RM have
to be provided with a finite set of detectors for properties
that are used as the vocabulary for the RM. The goal for the
learning of the RM is to allow it to represent the task as a
discrete optimization problem and to find an efficient local
search approach to solve it. The system will be learning the
RM and the policy of the environment at the same time.

Toro Icarte et al. (2019b) tested their proposed approach
(LRM) on three different POMDPs based on grid domains.
First, the cookie domain. It has three rooms connected by
a hallway. There is a button in the yellow room that, when
pressed, causes a cookie to randomly appear in the red or
blue room. The goal is for the agent to press the button and
go reach the cookie. Second, the symbol domain has three
symbols in the red and blue rooms. One of the symbols
and possibly a right or left arrow are randomly placed in
the yellow room. Intuitively, that symbol and arrow tell the
agent where to go. Third is the 2-keys domain. The agent
receives a reward of +1 when it reaches the coffee in the
yellow room. To do so, it must open the two doors. Each
door requires a different key to open it, and the agent can
only carry one key at a time. Initially, the two keys are
randomly located in either the blue room, the red room, or
split between them.

The authors tested two versions of the suggested LRM
method, LRM+DDQN which learns the policy using
DDQN and LRM+DQRM which uses a modified version of
the QRM. Based on the results of their experiments LRM
approaches largely outperform the baselines algorithms,
reaching close-to-optimal policies in the cookie and symbol
domain, and the LRM+DQRM methods learns faster than
LRM+DDQN methods but it is more volatile.

3.5. Illanes et al. 2020 [11]

Over the years Reinforcement Learning has become a
great tool for solving complex continuous control problems
in robotics. The advantage of using model-free RL is based
on being able to learn policies that maximize an external
reward signal through the interaction with the environment
without the need of a preprogrammed model of the char-
acteristics that control said environment. This advantage

comes with perks. In order for the agent to learn the en-
vironment’s dynamics and reward structure it can only be
done through random exploration, rising a problem of sam-
ple efficiency. Also, RL is not meant to learn multiple tasks
at the same time, an agent would have to learn a task first,
then one would have to redefine a new reward structure for
a second task and learn a new policy, this problem is known
as transfer learning.

In order to solve for the sample efficiency limitations of
Reinforcement Learning Illanes et al. propose leveraging
high-level symbolic planning models and automated syn-
thesis techniques, in combination with RL techniques. The
authors base this solution on the observation that approxi-
mated understanding of the environment can be character-
ized as a symbolic planning model, while leaving possibly
complex low level aspects of the environment unspecified.
As a result the RL problem is taskable, given the user can
program tasks as goal conditions in the symbolic domain.
The RL agent can improve sample efficiency as the high-
level plans can be used for transferring learning from pre-
viously learned policies, and the agent can learn complex
low-level control policies as it relies on model-free RL to
accommodate for all the information missing in the high-
level model.

To develop this novel system, Illanes et al. base their
work on the concept of learning through instructions [1],
which shows that sample efficiency can be improved if a
manually generated description of the task is given to the
agent. Illanes et al. take it further. They propose to au-
tomatically generate useful instructions using a high-level
abstraction of the environment and combine it with a hier-
archical reinforcement learning (HRL) based algorithm to
exploit said instructions.

To evaluate the proposed framework Illanes et al. com-
pare their work with a standard HRL in two environments,
OfficeWorld and Minecraft. After training and testing the
system in these environments the results show that after
the option policies are sufficiently trained the proposed sys-
tem significantly outperforms the traditional Q-learning and
HRL algorithms.

Literary Review - Performance

The papers discussed provide different perspective on
how to combine Reinforcement Learning with different
types of logic programming and formal logic languages to
improve the agent’s learning performance. The results of
these papers are promising and demonstrate the potential of
their methods, but in my opinion, there are some aspects of
their research work that could be improved.

In the work presented by Toro Icarte et al. (2019a) [9]
when working with the algorithm one has to provide a back-
ground knowledge function as a parameter. The accuracy
of this function seems to have a big role on the success

8

of this algorithm. This includes a level of complexity to
the algorithm that is not discussed in the paper and can
affect the scalability and generalization capabilities of this
method. Also, the agent’s obsession with the provided ad-
vice might result in slower convergence. There should exist
some sort of trade-off between goal and advice. The authors
do not dive into this topic at all and despite it being some-
thing important for the algorithm to be able to generalize or
scale. Finally, the paper shows the potential usefulness for
techniques that are based on advice (guidance) instead of
constraints (pruning), but does not dive deeper into a com-
parison of both methods, specially with the high interest in
safety of RL agents and its potential to generalize to these
types of tasks.

Ali Payani and Faramarz Fekri [15] claim that their al-
gorithm is capable of making the learned hypothesis inter-
pretable, but the interpretation is actually limited to formal
logic interpretation and therefore not interpretable to a non-
expert. This claim should be better explained or further
worked on for a better end-to-end interpretable solution. In
recent years there have been other Deep RRL algorithms
developed that are capable of processing images [17]. This
Deep RRL algorithm would’ve been a better method to ac-
tually compare the viability of this algorithm given the au-
thors claims.

Camacho et al. (2019a) [5] do not provide any discus-
sion on the computational complexity of the QRM algo-
rithm. The data provided is not clear on the efficiency of
this algorithm and therefore one cannot determine if it may
have application on more broader environments. The au-
thors omit necessary detail in the evaluation section in re-
gards to the tests. They claim to give the agents a set of
tasks on each environment but do not provide any details in
regards to what these tasks may be. This is important be-
cause we want to be able to properly determine how com-
plex of a task can this algorithm solve, and if its comparable
to other algorithms out there.

The work from Toro Icarte et al. (2019b) [10] and Illanes
et al. 2020 [11] have the same limitation when it comes to
scalability and their experiments. In terms of scalability, the
results from the experiments do not provide any insight on
its potential. How long does it take to solve the problems
in these environments? Can this be scaled to more complex
environments? These are questions that would be interest-
ing to solve and to do so the authors should work on provid-
ing more detailed data. There is not a lot of transparency in
regards to the environments used in the experiments. What
is the size of the grid world? what is the size of the office
world? How many steps does it take to traverse a room? etc.
This type of information is crucial in order for us to appre-
ciate and evaluate the actual performance difference of the
methods provided.

4. Generalization of RL policy learning
The papers in this section are mainly focused on the use

of Logic programming to assist Reinforcement Learning to
improve the possibility of generalization for the RL algo-
rithm.

4.1. Zhengyao Jiang and Shan Luo 2019 [12]

Even though Deep Reinforcement Learning (DRL) algo-
rithms have been able to achieve incredible results in com-
plex learning tasks, the learnt policies it produces are usu-
ally very hard to interpret and are not able to be general-
ized to different from the one it was meant to solve. In-
terpretability is a crucial feature of reinforcement learning
and in general of all machine learning algorithms for sys-
tem verification and improvement. The ability for an algo-
rithm to generalize is important for reinforcement learning,
usually in real world scenarios, it is not common that the
training and test environments are exactly the same.

To address these limitations, Jiang et al. propose a
new algorithm called Neural Logic Reinforcement Learn-
ing (NLRL) with the goal of representing the policies in
reinforcement learning by first-order logic. NLRL is a pol-
icy gradient methods that uses differentiable inductive logic
programming which has been proven to provide significant
advantages for interpretability and generalization in super-
vised tasks.

Differentiable Inductive Logic Programming (or DILP)
is a reimplementation of ILP into an end-to-end differen-
tiable architecture. With the differentiable deduction, the
system can be trained with gradient-based methods. The
authors introduce a new DILP architecture called Differ-
entiable Recurrent Logic Machine (DRLM). Compared to
DILP, in DRLM there is more flexibility in the number of
clauses that are used to define a predicate. It also needs less
memory to construct a model and it enables for a longer
learning logic chaining of different intentional predicates.
These benefits make DRLM capable of working with larger
problems.

Jiang et al. present a formulation of MDPs with logic
interpretation. An MDP with logic interpretation is a triple
(M,pS , pA), such that:

M : (S,A, T,R)

is a finite horizon MDP,

pS : S → 2G

is the state encoder that maps each state to a set of atoms
including both information of the current state and back-
ground knowledge, and

pA : [0, 1]|D| → [0, 1]|A|

9

Figure 10. Block Manipulation and Cliff-Walking

is the action decoder that maps the valuation of a set of
atoms D to the probability of actions.

Following this, the authors provide a brief overview on
how to solve the presented MDP (with logic interpretation)
with the combination of policy gradient and DILP. To eval-
uate the NLRL algorithm Jian et al. run the algorithm in
two environments (Fig.). First, Block Manipulation, which
consists of stacking blocks into a specific form. Second,
Cliff-Walking, which consists of a 5 × 5 grid world where
the agent has to reach a goal state without falling on the
cliff.

In the Block Manipulation experiment the agent is tested
on three tasks; STACK, UNSTACK and ON. To test the
generalizability of the induced policy in the STACK and
UNSTACK learning tasks they construct the test environ-
ment by modifying its initial state by swapping the top 2
blocks or dividing the blocks into 2 columns. The agent is
also tested in the environments with more blocks stacking
in one column. For the ON task they swap either the top two
or middle two blocks, and also increase the total number of
blocks. Similarly, to test the generalizability of the induced
policy in the Cliff-Walking experiment the authors changed
the initial position of the agent and the goal positions the
agent has to reach. Also, they changed the size to the grid
world to 6 × 6 and 7 × 7 and even tested a stochastic vari-
ant called Windy Cliff-Walking where the agent has a 10%
chance to move downwards regardless of the chosen action.

The results show that the NLRL agent succeeds to find
near-optimal policies on all the tasks.

Literary Review - Generalization

The paper discussed provides different perspective on
how to combine Reinforcement Learning with different
types of Logic programming and formal logic languages to
improve the ability to generalize the RL solution. The re-
sults of these papers are promising and demonstrate the po-
tential of their methods, but in my opinion, there are some
aspects of their research work that could be improved.

The system introduced by Zhengyao Jiang and Shan Luo
[12] integrates a high number of hyperparameters to tune
manually. The performance is heavily influenced by these
parameters. To ensure the scalability and the potential gen-
eralization of this approach it would be interesting to try
and update the methods for it to alleviate their burden. The

authors claim that their algorithm is capable of making the
learned hypothesis interpretable, but it is actually limited to
formal logic interpretation and therefore not interpretable
to a non-expert. This claim should be better explained or
further worked to provide better end-to-end interpretabil-
ity. Finally, the novel system can be interpreted as being
computationally expensive and it is not addressed as an is-
sue even though it could affect its generalization capability
when dealing with more complex scenarios.

5. Various topics
In this section I will be covering the papers that couldn’t

be classified in one of the three main topics mentioned
above. As mentioned in the Introduction these papers were
not examined in-depth.

Reinforcement Learning requires extensive exploration
of the environment in order to find the optimal policy, and
this is especially true when in comes to complex tasks.
Transferring knowledge from a source task to a target task
can be an effective way to expedite RL [13]. Zhe Xu and
Ufuk Topcu [16] propose the transfer of knowledge between
temporal tasks, which are tasks whose timing of the events
matter. They develop a form of characterizing the similarity
between temporal tasks through the use of logical transfer-
ability and develop a method to transfer learning between
similar temporal tasks. So, the system performs RL on an
extended state environment that includes the locations and
clock valuations of the timed automata of the source task,
establishing mappings between the components of said au-
tomata from the two tasks, and transfer the extended q-
function based on these mappings. Then, it performs RL
on the extended state for the target task. The evaluation of
the proposed methods in two domains show its capability to
improve the sampling efficiency of the RL problem.

Banihashemi et al. [3] develop a framework for agent ab-
straction based on situation calculus and the CoGolog pro-
gramming language. They develop a refinement mapping
specification on how each action of the high-level specifica-
tion of the agent is implemented by CoGolog programming
the low-level specification of the agent and how the fluents
are translated. They introduce the concept of sound abstrac-
tion between the high-level and low-level action theories
as suitable bi-simulation between their respective models,
as well as complete abstraction where all actions that can
happen in the high-level can also happen in the low level.
This novel framework can be used to efficiently solve com-
plex reasoning problems by finding a solution in the abstract
model, and then use this abstract solution as a template to
guide the search for a solution in the actual model.

When dealing with complex problems Reinforcement
learning can struggle to produce a policy that is humanly in-
terpretable. To address this issues Camacho et al. (2019b)
[6] introduces the problem of learning a Linear Temporal

10

Logic formula that can capture set of positive and nega-
tive example traces. This approach to learning LTL uses
symbolic state representation and searches through a space
of labelled formulas to generate an alternating automaton
that models observed behaviour from which the LTL can
read off. Testing their system in different environments
showcases its ability to learn human-interpretable behaviour
models.

Brafman et al. [4] investigate non-Markovian Fully Ob-
servable Planning Domains (NMFOPD) and introduce a
variation of the NMFOPD called TFOND where conditions
on the history and specified using linear temporal logic
on finite traces LTLf / LDLf . They develop the neces-
sary algorithms for planning in TFOND environments for
goal expressed in LTLf / LDLf and determine complex-
ity bound with respect to the domain and the goal. In ad-
dition, Brafman et al. show that TFOND are able to cap-
ture NMFONDs where the dependency on the history is ”fi-
nite state”, and can also capture Partially Observable Non-
deterministic Planning Domains.

Toro Icarte et al. (2018) [8] introduce the concept Re-
ward Machines (which is used in previously discussed pa-
pers). They define Reward Machines as a type of finite state
machine that supports the possibility of specifying reward
functions to the learner and allow for task decomposition.
When paired with the introduced Q-Learning for Reward
Machines algorithm (QRM, which can be incorporated with
deep neural networks), it can appropriately decomposes the
reward machine and uses off-policy q-learning to simultane-
ously learn sub-policies for the different components. The
authors show that QRM will converge to an optimal pol-
icy. Toro Icarte et al. (2018) test their proposed framework
in two discrete domains and show that find better policies
more quickly than Hierarchical Reinforcement Learning al-
gorithms in domains with a continuous state spaces.

6. Future Work
I have critically reviewed each paper but there are some

major critiques and gaps that can be generalized to all the
research literature I have read and that helped me define po-
tential future work. Most of the research presented lacks
any type of testing in complex environments. Most of the
experiments are performed in 2D environments. None of
them even try and include more complex components such
as computer vision into their testing, and therefore the novel
systems introduced can’t be determined to be robust enough
to hold in real world complex problems. All the algorithms
work with the assumption of the agents having a perfect
perception system. Human and computer vision are imper-
fect at detecting objects sometimes making the problem of
safety guarantee much more complex. The introduction of
this type of noisy data is neglected by all systems. This
makes it impossible to determine if the novel systems are ro-

bust enough to properly perform in environments that may
be more similar to real world scenarios. Given these cri-
tiques, the other gaps identified in current research, and the
existing literature I was able to define two potential sources
for the development of a new research project.

First, would be to choose one or more of the main top-
ics (safety, performance or generalization) and develop a
method that could be compared in more complex bench-
marks. The current research has been eye-opening in the
sense of its potential to improve the RL algorithm, but as
mentioned above the tests run are limited to very basic
bench marks. It would be interesting to compile and define
a list of bench marks and sort them by complexity and see
how far a algorithm that combines RL and Formal Logic can
work in said milestones. Personally I would be interested in
having a focus in safety of the RL agent.

A more ambitious and complex research project would
consist of the use of RL and Formal Logic in complex envi-
ronments, such as a 3D world that includes noisy data and
computer vision. I would train an object detection system
(with an existing algorithm) to extract the positions of safety
related objects, use the pre-trained object detection system
in RL training and apply LTL formula to improve the orig-
inal RL and assist with safety of the agent. It would be
interesting to determine if RL + Logic has the potential to
be adapted to real world complex applications.

Other minor research topics that have come to mind
based on the gaps in the current literature; a comparative
analysis on the use of Linear Temporal Logic (LTL) and the
use of LTLf / LDLf (LTL / LDL on Finite Traces) to deter-
mine which language is better fit for which problems, sim-
ilarly, a comparative analysis on the use of Inductive Logic
programming (ILP) and the use LTL to determine which
language is better fit for which problems, or a deeper dive
into the modularity of Reward Machines and Q-Learning
for Reward machines.

References
[1] Jacob Andreas, Dan Klein, and Sergey Levine. Modular mul-

titask reinforcement learning with policy sketches. In Inter-
national Conference on Machine Learning, pages 166–175,
2017.

[2] Jorge A Baier and Sheila A McIlraith. Planning with first-
order temporally extended goals using heuristic search. In
Proceedings of the National Conference on Artificial Intelli-
gence, volume 21, page 788. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2006.

[3] Bita Banihashemi, Giuseppe De Giacomo, and Yves
Lespérance. Abstraction in situation calculus action theo-
ries. In Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017.

[4] Ronen I Brafman and Giuseppe De Giacomo. Planning for
ltlf/ldlf goals in non-markovian fully observable nondeter-
ministic domains. In IJCAI, pages 1602–1608, 2019.

11

[5] Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen,
Richard Anthony Valenzano, and Sheila A McIlraith. Ltl and
beyond: Formal languages for reward function specification
in reinforcement learning. In IJCAI, volume 19, pages 6065–
6073, 2019a.

[6] Alberto Camacho and Sheila A McIlraith. Learning in-
terpretable models expressed in linear temporal logic. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, pages 621–630,
2019b.

[7] Mohammadhosein Hasanbeig, Alessandro Abate, and
Daniel Kroening. Cautious reinforcement learning with log-
ical constraints. arXiv preprint arXiv:2002.12156, 2020.

[8] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and
Sheila McIlraith. Using reward machines for high-level task
specification and decomposition in reinforcement learning.
In International Conference on Machine Learning, pages
2107–2116, 2018.

[9] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Anthony
Valenzano, and Sheila A McIlraith. Advice-based explo-
ration in model-based reinforcement learning. In Canadian
Conference on Artificial Intelligence, pages 72–83. Springer,
2019a.

[10] Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick
Valenzano, Margarita Castro, and Sheila McIlraith. Learn-
ing reward machines for partially observable reinforcement
learning. In Advances in Neural Information Processing Sys-
tems, pages 15523–15534, 2019b.

[11] León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A
McIlraith. Symbolic plans as high-level instructions for rein-
forcement learning. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 30,
pages 540–550, 2020.

[12] Zhengyao Jiang and Shan Luo. Neural logic reinforcement
learning. arXiv preprint arXiv:1904.10729, 2019.

[13] Girish Joshi and Girish Chowdhary. Cross-domain transfer
in reinforcement learning using target apprentice. In 2018
IEEE International Conference on Robotics and Automation
(ICRA), pages 7525–7532. IEEE, 2018.

[14] Xiao Li and Calin Belta. Temporal logic guided safe rein-
forcement learning using control barrier functions. arXiv
preprint arXiv:1903.09885, 2019.

[15] Ali Payani and Faramarz Fekri. Incorporating relational
background knowledge into reinforcement learning via dif-
ferentiable inductive logic programming. arXiv preprint
arXiv:2003.10386, 2020.

[16] Zhe Xu and Ufuk Topcu. Transfer of temporal logic formulas
in reinforcement learning. arXiv preprint arXiv:1909.04256,
2019.

[17] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor
Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Re-
ichert, Timothy Lillicrap, Edward Lockhart, et al. Re-
lational deep reinforcement learning. arXiv preprint
arXiv:1806.01830, 2018.

12

