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1 Introduction

Reinforcement Learning (RL) is a field of machine learning that focuses on
training an intelligent agent on how it ought to act in order to achieve a set task
in an unknown environment. The environment is typically assumed to be an
unknown Markov decision process (MDP). Reinforcement Learning algorithms
train an agent by making it explore the unknown environment (exploration)
and learn which actions will maximize the cumulative reward provided by said
environment (exploitation). This thesis will focus on improving two of the
main concerns with reinforcement learning, safety and performance.

When training an agent in a MDP the main focus is to maximize the cumu-
lative reward it receives. So, the exploration process typically does not concern
itself with potential threats to the agent and therefore can not guarantee its
safety. Constrained Markov Decision Processes (CMDPs) are a special form
of MDPs that allow for the separation of safety specifications from the reward
function by naturally encoding the safety concerns as constraints. They were
first introduced by Altman [1999]. A CMDP will have the same components
as an MDP plus a cost function and an upper bound for the expected cu-
mulative constraint cost. In a CMDP the goal is to learn an optimal policy
that maximizes the cumulative reward and whose cumulative cost is under the
established upper bound.

In addition, intelligent agents do not have access to the reward function
governing their environment. For the agents, the reward function is a black-
box that will return an immediate reward given their current state. Therefore,
finding an optimal policy using reinforcement learning can require a lot of
exploration of the environment. Sometimes this can be of very high cost and
in some cases not possible to perform, such as in physical environments. So,
if the goal is for the agent to maximize cumulative reward, it would be helpful
if they could have some knowledge of their governing reward function/s. One
way to approach this limitation is by introducing the use of logic to supply
prior knowledge to the agent. Icarte et al. [2018a] introduced Reward Machines
(RM), a type of finite state machine that would allow the agent to be exposed
to the structure of the reward function. The idea is for the RM to replace the
original reward function in an MDP, transforming the MDP into a MDP with
a Reward Machine (MDPRM). The MDPRM can then be exploited by a RL
algorithm in a way that it will allow the agent to decompose their task and
speed up the learning process. RMs can have some limitations in their ability
to specify every type of reward-worthy behaviour. Instead one can use formal
languages, such as Linear Temporal Logic (LTL), for this part of the process.
Then, the reward machines can be constructed from said formal specification.
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For my thesis, I propose the integration of Reward Machines into Con-
strained Markov Decision Processes. The goal is to develop a safer and more
efficient solution to the constrained RL control problem. The ideas is to use
Linear Temporal Logic (LTL) to translate the reward functions into formal
rewards and use it to construct an equivalent Reward Machine. I will be using
the RM to transform the CMDP into a new framework called CMDP with a
Reward Machine (CMDPRM) and, to solve the CMDPRM I will be developing
a new algorithm called Constrained Learning for RM (CLRM) that will lever-
age the RM to achieve a faster and safer learning process. The goal is to test
and evaluate the proposed methodology in the Safety Gym benchmark suite
developed by Ray et al. [2019], which consists of high-dimensional continuous
control environments meant to measure the performance and safety of agents
in Constrained Markov Decision Processes.

2 Related Work

2.1 Reinforcement learning, Logic and Reward Machines

The use of Logic to help solve Reinforcement Learning control problems has
been a popular topic in the last several years. Most of the work has been
focused on how it can be used to make reinforcement learning safer and assist
reinforcement learning to improve its performance.

In terms of safety, Li and Belta [2019] proposed combining co-safe Trun-
cated Linear Temporal Logic (scTLTL) with control Lyapunov functions to
improve exploration, and to incorporate control barrier functions to safeguard
the exploration and deployment process. They developed a learnable system
that allows users to specify tasks and constraints. De Giacomo et al. [2019]
explored the concept of safety through ”Restraining Bolts”, a device that re-
stricts an agents actions when connected to its systems. The proposed system
is built upon the idea of having two independent sets of features returned from
the world, one to the agent and another one to the LTLf/LDLf restraining
specifications. The introduction of LTLf/LDLf changes the whole framework
to a Non-Markovian Decision Process (NMDP). In order to be able to solve
the new framework the LTLf/LDLf restraining formulas are transformed into
deterministic finite state automata tracking the stage of satisfaction of the
formulas. This enables transforming the NMDP into an equivalent MDP that
can be solved with a RL algorithm. De Giacomo et al. [2020] propose a new
learning framework that combines Imitation Learning (IL) with Restraining
Bolts (RB). Imitation Learning consists of generating a reward function based
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on a set of traces captured by an expert agent. A limitation of IL is that the
expert and the learner can be different types of agents, this could mean that
the learner is not capable of interpreting the traces generated by the expert. To
address this issue the authors propose the use of RB. De Giacomo et al. [2019]
have proven that RB can help an RL agent learn from different representations
that don’t have explicit mappings. De Giacomo et al. [2020] use this principle
to develop a new methodology that uses IL to produce a logical specification
of the reward function and incorporate it into a Restraining Bolt to facilitate
the agent’s learning process. Hasanbeig et al. [2020] introduced the concept
of safe padding, which allows an agent to learn an optimal policy while guar-
anteeing its safety. The main idea is for the agent to have limited knowledge
of its own dynamics, it starts performing exploratory cautious actions, and
gradually, in line with the growing confidence about the environment obtained
from observations, the range of acceptably safe actions grows, and the uncer-
tain component of the dynamics becomes known. This approach limits the
exploration, so Hasanbeig et al. [2020] used LTL formulas in order to specify
tasks to automatically provide reward shaping and task decomposition, and
enable optimal learning with limited exploration.

Icarte et al. [2018b] proposed the use of advice to help guide the agent
through a more efficient exploration, and they combine advice specified as
an LTL formula, with a new version of the R-MAX RL algorithm which has
the ability to be guided by said advice. Their results show that good advice
seems to be able to reduce the exploration needed to learn a optimal policy.
Icarte et al. [2018a] introduced the concept of Reward Machines, a type of
finite state machine used to specifying reward and task decomposition. When
paired with their Q-Learning for Reward Machines algorithm it can appro-
priately decomposes the tasks while simultaneously learn sub-policies for the
different components and find better policies more quickly than other tradi-
tional Reinforcement Learning algorithms. Camacho et al. [2019] built on the
work presented by Icarte et al. [2018a] by showing that a reward specified in
any number of formal languages (LTL, LDL, Golog, PLTL, Regular Expres-
sions, etc.) can be translated into a Reward Machine and how the reward
machine can be exploited by a tailored q-learning algorithm to improve the
sample efficiency compared to traditional reinforcement learning algorithms.
Illanes et al. [2020] proposed combining high-level symbolic planning models
and automated synthesis techniques with RL techniques. An approximated
understanding of the environment can be characterized as a symbolic planning
model, while leaving possibly complex low level aspects of the environment un-
specified. The RL agent can improve sample efficiency as the high level plans
can be used for transferring learning from previously learned policies, and the
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agent can learn complex low-level control policies as it relies on model-free
RL to accommodate for all the information missing in the high level model.
More work in this field has been done by Icarte et al. [2019b], Camacho and
McIlraith [2019b], and Payani and Fekri [2020].

2.2 Constrained Reinforcement Learning

The application of constraints has been a focus of research in the field of
reinforcement learning. They are a natural and widely relevant way for safety
criteria to be formulated which makes it highly appealing when working on
concerns of safety in RL control problems. In recent years there has been
a surge of work focused on developing novel algorithms dedicated to solve
constrained RL problems.

Achiam et al. [2017] introduced Constrained Policy Optimization (CPO), it
was the first general-purpose policy search algorithm for constrained RL where
at each iteration, guarantees of near-constraint satisfaction were achieved.
Dalal et al. [2018] address the constrained RL problem by adding to the deep
policy network a safety layer that analytically solves an action correction for-
mulation per each state. Bohez et al. [2019] propose a new reinforcement
learning technique that employs Lagrangian relaxation to learn the Lagrangian
multipliers for the optimization and the parameters of a control policy that sat-
isfies the constraints. In addition, they showed that one can meet constraints
either in anticipation or in a per-step manner, and can also learn a single strat-
egy that is able to trade between return and cost dynamically. Chow et al.
[2019] presented a safe policy optimization algorithm based on a Lyapunov
approach. The algorithm can use any standard policy gradient approach to
train a deep neural network policy, while ensuring near-constraint satisfaction
for each policy update by projecting either the policy parameter or the action
on the set of feasible solutions induced by the state-dependent linearized Lya-
punov constrains. More work in this field has been done by Saunders et al.
[2017] and Wang et al. [2019].

3 Proposed Research

My thesis focuses on developing a safer and more efficient solution to the con-
strained RL control problem by using Linear Temporal Logic (LTL) formulas
and Reward Machines with a new constrained learning algorithm developed
specifically for Constrained Markov Decision Processes (CMDP). On one hand
I am using LTL to specify the reward structure as a Reward Machine and use
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it to define a new framework called CMDP with RM (CMDPRM). On the
other hand I am developing a novel Contrained Learning algorithm called
Constrained Learning for RM (CLRM) that will use off-policy learning and is
capable of solving the control RL problem in the CMDPRM.

3.1 CMDP with Reward Machines

In order to express a reward function that reflects complex reward-worthy
behaviour I am using Linear Temporal Logic formulae to encode the complex
task we want the agent to learn and use it to define the reward function as
a Reward Machine which will also include the constraints provided by the
CMDP. The RM is a type of finite state machine that will allow the agent to
decompose the task (and specify multiple tasks) allowing it to learn an optimal
policy while minimizing exploration. In order to be able to exploit the features
of RMs in a CMDP I will have to map it to a CMDP with Reward Machines
(CMDPRM) that contains all the elements of a CMDP plus the elements of
a RM with a labelling function that will act as a liaison between them. The
LTL formulas and the reward machines will also contain the constraints. In
addition to returning the appropriate reward the reward machine will also
return the appropriate constraint value when necessary. This will be used to
learn the expected cost at every state in parallel to the expected reward. This
will be the first time the advantages that Logic and Reward Machines bring
have been leveraged to solve CMDPs.

3.2 Constrained Learning for Reward Machines

In order to solve the control problem defined by the CMDPRM I develop
a tailored algorithm based on traditional constrained learning algorithm for
RL called Constrained Learning for Reward Machines (CLRM). As mentioned
earlier an advantage of Reward Machines is its ability to specify the structure
of complex tasks. The goal is for CLRM to decompose the tasks represented
by the RM and apply off-policy learning to learn sub-policies in parallel for the
different components, this will allow the agent to learn better policies while
minimizing the exploration. On top of that, during each iteration CLRM will
define a set of safe states that the agent can transition to based on the expected
cost that will also be learnt in parallel thanks to the reward machine.
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4 Testing and Evaluation Methods

In order to prove that my novel approach is a viable solution for safety RL
control problems I will be working with Open AI’s Safety Gym benchmark
suite developed by Ray et al. [2019]. It consists of an environment-builder
that allows a user to create custom high-dimensional continuous control envi-
ronments. One can mix and match from a wide range of agents, tasks, goals,
and safety requirements, it is meant to be used to measure the performance
and safety of agents in CMDPs.

The agents perceive the world through a robot’s sensors and communicates
with the world through its actuators. The available robots are Point, a basic
2D-plane confined robot, Car, a robot with two parallel wheels and Doggo, a
bilateral symmetric quadrupedal robot.

Three unique tasks are currently provided by the Safety Gym environment-
builder. The reward features can be customised to allow rewards to be either
sparse or dense. The available tasks are Goal, a series of goal positions, Button,
a set of highlighted buttons that are meant to be clicked in sequence, and Push,
a box that has to be moved to a variety of goal location.

Safety Gym has five types of elements related to safety criteria. These
elements can be mixed and matched freely. The available safety elements are
Hazards, a danger area in the environment, Vases a set of objects that should
be avoided, Pillars, immobile objects that should be avoided, Buttons, a fake
button that act as a fake goal for the Button task that should not be clicked,
and Gremlins, a moving object that should not be collided with.

4.1 Evaluation

In order to determine the viability of the proposed system I will evaluate the
algorithm I am developing with other algorithms that are currently used in the
RL field. To determine it’s usefulness for safety concerns I will be comparing
average episodic return, average episodic sum of costs and average cost over
the training period. I will also be comparing the sampling efficiency of the
algorithms.
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